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Abstract
We present finite-amplitude spin-wave solutions for the nonlinear equations
of the classical Heisenberg model on a general periodic lattice. These are
families of periodic solutions bifurcating from the ferromagnetic (FR) and
antiferromagnetic (AF or Néel) states which are fixed points of the flow.
We allow for longitudinal anisotropy and constant uniform magnetic field in
the direction of anisotropy. We find analytical expressions for the energy–
frequency (e–w) curves of these families. In particular, we show that the AF
families come in pairs of vertical lines. In the expression of both the FR and
AF nonlinear spin waves (NLSWs), we are able to eliminate the amplitude
in favour of the frequency and/or energy. All special cases of solutions are
carefully analysed. We discover that the two AF families end on the FR family
of a corresponding wavevector. This correspondence can be made precise
without compromising the generality of the lattice. Our major point is the proof
that these FR–AF intersections on the e–w plot are isochronous branchings.
Hence, we establish a novel view of the AF NLSWs as bifurcations of the FR
NLSWs.

PACS number: 05.45.−a

1. Introduction

The Heisenberg model (HM) has been a subject of immense interest in many-body physics
for a long time. It arises as an effective quantum-spin-system theory for the complex
interactions between electrons in insulating crystals [1–4], and successfully describes the
ferromagnetic (FR) or antiferromagnetic (AF) ordering of ionic spin moments at low
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temperatures [3, 4]. Extensive theoretical and experimental studies2 have been carried out
on the quantum properties of the HM, including the AF ground state, magnetic correlations,
phase transitions and the Haldane gap [9] in low-dimensional magnets. Recently, the
discovery of high-temperature superconductivity in lamellar copper-oxides and its connection
with two-dimensional and quasi-one-dimensional antiferromagnetism have sparked renewed
interest in the HM (see [18] and references therein).

The quantum regime of spin systems certainly hides a few important surprises, e.g., the
Haldane gap in one dimension. However, a great variety of magnetic phenomena can also be
understood by the study of classical spins. Conversely, classical magnetic systems are proving
ground for a variety of modern concepts in nonlinear dynamics. In particular, the nonlinear
dynamics of the one-dimensional HM and some of its variants has attracted considerable
attention.

In the continuum limit, the Heisenberg chain is governed by well-known equations, such
as the sine-Gordon and nonlinear Schrödinger equations, which are completely integrable.
Many studies are devoted to the classical and quantum aspects of solitary excitations [26–28]
in these continuous models. Higher dimensional lattices have also been treated [29, 30] as
well as various generalizations (e.g., see [31]). Also, large-scale magnetization dynamics have
been analysed with classical methods ([32, 33], etc).

Recently, the fabrication of magnetic superlattices3 has motivated a number of numerical
investigations of solitonic and other excitations of finite discrete chains [34–36]. However,
in the discrete case, even the integrability of a simple spin ring is unlikely [37], and the only
known analytical solutions so far are the nonlinear spin-wave (NLSW) solutions (apart from
a few limiting cases [37]).

Ferromagnetic linear spin waves (LSWs) for the HM on a general Bravais lattice, as
well as the corresponding NLSWs, have been worked out long ago, and can be found, for
example, in [38]. Antiferromagetic NLSWs for the special case of a one-dimensional isotropic
HM with equal nearest neighbour interactions appeared much later in [39]. There, it is
shown that the dispersion (frequency–wavevector) relation for these exact solutions is identical
to the amplitude-independent dispersion of the AF LSWs.

In all these works, the FR NLSWs are presented as families of periodic solutions
parametrized by the angle between an individual spin and the z-axis (the same for all spins).
On the other hand, the AF NLSW families depend on two such angles (though constrained so
that only one is independent), one for the odd and one for the even sublattice. Hence, the two
types of families are expressed in terms of different parameters, and no particular attention is
drawn towards the relationship between the FR and AF NLSWs.

In this paper, we adopt a different point of view. We consider the anisotropic HM on a
general periodic lattice and in the presence of an external magnetic field, and we parametrize
the family of FR NLSWs by the frequency, instead of the amplitude, of these periodic orbits.
We then derive a (quadratic) energy–frequency relation (e–w plot). This allows us to to write
down the FR NLSW with the energy as a parameter. Special cases are carefully treated. In
the neighbourhood of the endpoints of the e–w curve, we recover the LSW solutions. For the
same system, with the extra assumption of bipartiteness for the lattice, we also introduce the
AF NLSWs. We find that these solutions have an energy-independent quadratic dispersion,
as it has been previously shown [39] in the particular case of an isotropic Heisenberg chain.
Hence, they form a pair of vertical families for each value of the wavevector.

2 Of course, any list of publications, we could refer to here, would be largely inadequate. For some important work
in the field, see [5–25] and references therein.
3 These materials are physical realizations of lines of large (thus classical) spins.
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In the expression of the AF NLSWs, we are able to eliminate the amplitudes in favour
of a single parameter, namely the energy. In this way, we can easily show that the AF
families, which start from the Néel state at small amplitude, have their endpoints lying exactly
on the e–w curve of a FR family. The FR–AF intersection is characterized by a smooth
transition between the FR and AF NLSW. In other words, we find that the two AF families
branch off the FR family of a corresponding wavevector. Our proof is for the HM on an
arbitrary Bravais lattice and therefore it requires a careful treatment of the relation between
the lattice srtucture and the wavevector. We finally give a detailed description of the e–w plot
in all different regimes of field intensity and wavevector.

Note that there are many well-known examples of bifurcations in non-integrable systems
of only a few degrees of freedom, and they are fairly well understood [40]. However, for
systems with a large number of degrees of freedom, bifurcations that are formally known,
not only empirically observed, are scarce. In this sense, it is quite interesting to have
identified the bifurcations, for any number of spins, between the families emanating from
the two extrema (at zero field) of the classical spectrum.

2. The classical HM

One way to motivate the classical HM is to employ the ‘cold’ (or zero temperature, or pure
state) time-dependent Hartree–Fock approximation (TDHF) [41] on the quantum Heisenberg
Hamiltonian

H = −
�∑

j<l

gjlSj · Sl −
�∑

j=1

Bj · Sj . (2.1)

The first term in H contains the exchange constants. The second term, the Zeeman term,
assumes the presence of an external magnetic field B. We can also allow for longitudinal
anisotropy � by defining

Sj ·Sl ≡ S⊥
j · S⊥

l + �Sz
jS

z
l ≡ (Sx

j Sx
l + S

y

j S
y

l

)
+ �Sz

jS
z
l . (2.2)

In the zero-temperature TDHF approximation, one starts with the simplifying assumption that
the total wavefunction |�(t)〉 of the quantum system is composed of independent particles,
i.e., it is the product of single-particle wavefunctions |φj (t)〉. In the case of identical
fermions, the antisymmetry requirement on the wavefunction leads to the well-known Slater
determinant ansatz. However, for a spin system with � distinguishable lattice sites, we can
simply write |�(t)〉 =⊗�

j=1 |φj (t)〉, where all states are normalized.
The time-dependent Schrödinger equation(

i
d

dt
− H

)
|�〉 = 0 (2.3)

and its complex conjugate are equivalent to Dirac’s action principle δS = 0 against independent
variations of 〈�| and |�〉 in

S[�] =
∫ t2

t1

dt〈�|i d

dt
− H |�〉. (2.4)

This yields a set of � nonlinear one-particle equations of motion

i
d

dt
|φj 〉 = δ

δ〈φj | 〈�|H |�〉, j = 1, . . . , �. (2.5)
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From (2.1) the energy expectation value of the Hartree–Fock state |�〉 reads

H = 〈�|H |�〉 = −
�∑

j<l

gjl〈φj |Sj |φj 〉 · 〈φl|Sl|φl〉 −
�∑

j=1

Bj · 〈φj |Sj |φj 〉 (2.6)

or

H = −
�∑

j<l

gjluj ·ul −
�∑

j=1

Bj ·uj (2.7)

where uj are the expectation values of the spins:

uj ≡ 〈Sj 〉 ≡ 〈�|Sj |�〉 = 〈φj |Sj |φj 〉, j = 1, . . . , �. (2.8)

Inserting (2.6) into (2.5), we find that each spin evolves according to

i
d

dt
|φj 〉 = −F j · Sj |φj 〉 (2.9)

where the mean field F j is

F j ≡
〈

�∑
l=1

gjl

(
S⊥

l + �Sz
l z
)

+ Bj

〉
=

�∑
l=1

gjl

(
u⊥

l + �uz
l z
)

+ Bj , (2.10)

z being the unit vector in the z-direction. This F j is the effective field the j th spin interacts
with. Note that the motion of the approximate total wavefunction is governed by a Schrödinger
equation

i
d

dt
|�〉 = HHF|�〉 (2.11)

where

HHF = −
�∑

j=1

F j ·Sj (2.12)

is the TDHF quantum Hamiltonian. Of course, the physical validity of TDHF, as of any
mean-field approximation, should rest less on its description of the full-lattice wavefunction
than its prediction of the motion of single-site expectation values [41].

Now, starting from the Heisenberg equation for the j th spin operator

dSα
j

dt
= [Sα

j ,HHF
] = −

3∑
β=1

[
Sα

j , S
β

j

]
Fβ

j ,

using the spin commutation relationships[
Sα

j , S
β

l

] = iδjlεαβγ S
γ

j (2.13)

and taking the expectation value with respect to |�〉 of both sides of the resulting equation,
one derives a system of � coupled nonlinear equations of motion

duj

dt
= uj ×

(
�∑

l=1

gjl

(
u⊥

l + �uz
l z
)

+ Bj

)
︸ ︷︷ ︸

F j

, j = 1, . . . , � (2.14)

for the individual average spins. It is clear, from this derivation, that the cross-product
(torque) form of (2.14) is due to the inner product form (2.12) of HHF and is independent of



Nonlinear spin waves and the ferro-antiferromagnetic bifurcations 8839

the particular expression for the mean field F j . Note also that (2.14) is invariant under the
rescaling transformation(

1

t
, g,B

)
→ J

(
1

t
, g,B

)
(2.15)

where J is a real constant, hence an overall renormalization of the exchange and field strengths
does not affect the dynamics.

Taking the inner product of both sides of (2.14) with uj , we see that the equations

u2
j = s2

j , j = 1, . . . , �, (2.16)

with sj arbitrary4 non-negative real constants, are consistent with the classical dynamics. It
is known that on the hypersurface defined by (2.16), one can recast (2.14) in the form of
Hamilton’s equations with the Hamiltonian function H. Note finally that (2.14) is invariant
under the rescaling(

1

t
,uj ,B

)
→ s

(
1

t
,uj ,B

)
(2.17)

for any real constant s. Consequently, at zero magnetic field the dynamics essentially depend
only on the relative (not the absolute) spin lengths.

3. Ferromagnetic NLSWs

To find the NLSW solutions, it will be more convenient to write out (2.14) in terms of the
components u±

j ≡ ux
j ± iuy

j , u
z
j :

du+
j

dt
= iuz

j

(
�∑

l=1

gjlu
+
l

)
− iu+

j

(
�∑

l=1

�gjlu
z
l − B

)
; j = 1, . . . , � (3.1a)

2i
duz

j

dt
= u−

j

(
�∑

l=1

gjlu
+
l

)
− u+

j

(
�∑

l=1

gjlu
−
l

)
; j = 1, . . . , �, (3.1b)

where the magnetic field is taken to be static, homogeneous and pointing along the negative
z-direction. We assume a system of � equal spins s, meaning that we are interested in
solutions on the shell (2.16) with all sj s equal to s. The spins are sitting on the sites of a
finite D-dimensional Bravais lattice with Born–von–Kármán (cyclic) boundary conditions.
The exchange constants are taken as gjl = g(|Rj − Rl|), where Rj is the position vector of
the j -site. Then, the interactions of an individual spin are independent of its location on the
lattice.

Under these assumptions, we can easily show that the system of equations (3.1) supports
finite-amplitude spin-wave solutions of the form{

u+
j = s sin θ exp[i(k · Rj + ωt − φ)]

uz
j = s cos θ

}
θ ∈ [0, π ], φ ∈ [0, 2π),

s > 0, j = 1, . . . , �.
(3.2)

The wavevector k runs over a set of � real values that depend on the particular lattice (see
section 5). As for ω, it will turn out to be a real function of k. At this point though, it can be
considered a general complex parameter. Note that uz

j is a constant independent of both the

4 If following the derivation of (2.14), the uj adhere to their meaning as average spins, then the values of the constants
sj are actually restricted.
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time t and the site j . In general, (3.2) is the only solution of the equations of motion on the
equal-spins shell u2

j = s2, with constant and equal z-components of the individual spins [42].
Let us prove first that equation (3.1b) is satisfied. When we substitute (3.2) into (3.1b), we
obtain

0 =
�∑

l=1

gjl sin[k · (Rl − Rj )] (3.3)

within a factor 2is2 sin2 θ multiplying the sum on the right. But equation (3.3) is an identity.
Indeed, due to the afore-mentioned properties of the lattice, the right-hand side of (3.3) is
independent of j . Therefore, we can replace

∑�
l=1 by 1

�

∑�
j=1

∑�
l=1, which makes the

validity of (3.3) obvious. As for equation (3.1a), since uz
j in (3.2) is a constant, it becomes

a first-order linear system in u+
j . Substituting the first equation of (3.2) into (3.1a) and using

(3.3), we find that, unless sin θ is zero (corresponding to the θ = 0, π FR fixed points), ω

needs to be related to k by an amplitude-dependent dispersion relation. That, we can write as

w(k, θ) = b + cos θ [1 − v(k)] (3.4)

with the following definitions5:

J ≡ − 1

2D

�∑
l=1

gjl, (3.5)

2D being the number of neighbours of a site,

w ≡ ω

2DJ�s
(3.6)

b ≡ B

2DJ�s
(3.7)

and

v(k) ≡ − 1

2DJ�

�∑
l=1

gjl cos[k · (Rl − Rj )]. (3.8)

Now, if v �= 1, we can invert (3.4) for cos θ and substitute in (3.2). In this way, we find
an expression for the NLSWs in terms of the frequencyu+

j = s
[
1 − (w−b

1−v

)2] 1
2

exp[i(k ·Rj + wτ − φ)]

uz
j = s w−b

1−v

 b − |1 − v| � w � b + |1 − v|
φ ∈ [0, 2π), j = 1, . . . , �,

(3.9)

where τ is the rescaled (dimensionless) time

τ ≡ (2DJ�s)t. (3.10)

According to (2.7), the energy associated with the solution (3.2) is given by

e(k, θ) = 2b cos θ + cos2 θ + v(k) sin2 θ (3.11)

where

e ≡ H
�DJ�s2

. (3.12)

5 For a D-dimensional hypercubic lattice with only nearest-neighbour interactions, 2D is the coordination number
and so the non-vanishing exchange constants are simply gjl = −J .
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Eliminating the amplitude cos θ between (3.4) and (3.11), one finds the quadratic e–w curves

e(k, w) = v(k) − b2

1 − v(k)
+

1

1 − v(k)
w2 (3.13)

with k labelling the different families of periodic orbits (3.9). Moreover, we can substitute
cos θ from (3.11) into (3.2) to get an energy parametrization of the families

u+
j = s

[
1−e
1−v

+ 2b
1−v

−b±
√

b2+(1−v)(e−v)

(1−v)

] 1
2

× exp
[
i
[
k · Rj

± τ
√

b2 + (1 − v)(e − v) − φ
]]

uz
j = s

−b ±
√

b2+(1−v)(e−v)

(1−v)



1 − 2|b| � e � 1 + 2|b|, if |b| � |1 − v|
v − b2

1−v
� e � 1 + 2|b|, if |b| � 1 − v

1 − 2|b| � e � v − b2

1−v
, if |b| � v − 1

φ ∈ [0, 2π), j = 1, . . . , �.

(3.14)

According to (3.9) w varies smoothly between its limits and so the double sign ± in
(3.14) does not signify two different families; it is just the sign of w. The inequalities in
(3.14) determine the energy range. The quickest way to derive them is by requiring that the
argument of the square root in (3.14b) be non-negative and also using (3.13) in conjunction
with the inequalities in (3.9). Expressions (3.9) and (3.14) describe the FR NLSW families
(see figure 1) with the period and energy respectively as continuation parameters. These
families consist of non-trivial periodic trajectories, plus the equilibrium point (0, v−b2/(1−v))

which exists for |b| � |1 − v| and corresponds to the angle θ = arccos[b/(v − 1)]. For
b = ±(v − 1), this point coincides with the FR state (all spins parallel) along the ±z-axis and
is the highest (lowest) energy orbit of the FR family for v > 1(v < 1).

In the special case v = 1, we find from (3.4) and (3.11) that (3.2) gives a vertical family
with the frequency w = b:u+

j = s
[
1 − ( e−1

2b

)2] 1
2

exp[i(k ·Rj + bτ − φ)]

uz
j = s e−1

2b


φ ∈ [0, 2π)

1 − 2|b| � e � 1 + 2|b|
j = 1, . . . , �.

(3.15)

At zero magnetic field (b = 0), its e–w plot collapses to the point (0, 1). That limit of
equation (3.15) is a family of degenerate fixed points of energy e = 1, which can be found by
simply setting ω = 0 in (3.2).

Note that at k = 0 equation (3.2) gives a family of cycles that are independent of j . For
θ �= 0, π all spins point along the same direction as they precess about the z-axis with the
dimensionless frequency

w = b + cos θ

(
1 − 1

�

)
. (3.16)

In fact, it is easy to see that these are the only spatially homogeneous solutions6 of the
equations of motion (3.1a), (3.1b). Note that at zero magnetic field, the planar

(
θ = π

2

)
solutions are stationary and particularly in the isotropic case (� = 1) all the solutions in the
family are stationary.

6 For the general XYZ Heisenberg model and for spatially homogeneous solutions, the equations of motion for the
spins are equivalent to the Euler equations of motion for the angular frequency of a torque-free rigid body [37]. The
spins perform a precessional motion around one of the axes with nutation (Poinsot’s motion). Here, the x–y isotropy
removes the latter.
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In the vicinity of the endpoints of the FR family we have θ ≈ 0, π,w ≈ b ± (1 − v), e =
1 ± 2b and, to lowest order in σ ≡ sin θ ≈ 0, the periodic trajectories are the FR linear spin
waves{

u+
j = σ exp{i[k · Rj + (b ± (1 − v))τ − φ]}

uz
j = ±s

}
φ ∈ [0, 2π), j = 1, . . . , �. (3.17)

As a closing remark for this section, note that the FR spin waves are independent of the
parameters J and s. The same holds for the AF spin waves that we discuss in the following
section. This is due to the rescaling symmetries (2.15) and (2.17) of the dynamics. The spin
waves depend on the relative interactions between different sites (determined by D and gjl),
the anisotropy � (only through v(k)), the field b and finally the number of spins �.

4. Antiferromagnetic NLSWs

We now impose the additional requirement that the lattice is bipartite, that is, it is divided
into two disjoint sublattices A and B, so that any two interacting sites belong to different
sublattices. We also maintain that interactions of a site are location independent; in particular,
every spin has the same interactions irrespective of the sublattice to which it belongs. Then,
we may ask whether the system of (3.1a), (3.1b) admits solutions of the type (3.2) but for
each of the two sublattices separately:

u+
j = s sin θA(B)

× exp[i(k · Rj + ωt − φA(B))]

uz
j = s cos θA(B)

 θA(B) ∈ [0, π ], φA(B) ∈ [0, 2π),

s > 0, j ∈ A(B) ⊂ {1, . . . , �}. (4.1)

The wavevector k assumes �/2 distinct values determined by the lattice structure. The
discussion here is independent of the particular values of k, so we defer further details on that
until section 5. In equation (4.1), it turns out that θA and θB are not independent and neither
are φA and φB. Yet, we will find that (4.1) provides a class of solutions broader than (3.2). In
[42], it is argued that (4.1) is, in general, the only solution of the equations of motion on the
equal-spins shell u2

j = s2, and with constant and equal z-components of the individual spins
in each sublattice. Substituting (4.1) in (3.1b) and (3.1a) and making use of (3.3) leads to

0 = v sin θA sin θB sin(φA − φB) (4.2)

and

sin θA(b + cos θB − w) = v cos θA sin θB exp [i(φA − φB)] (4.3)

(as well as the A ↔ B interchange of (4.3)) respectively. We now explore the possible
solutions of (4.2), (4.3).

First we consider the case where θA = θB = θ . The vanishing of sin θ satisfies (4.2),
(4.3) and, according to (4.1), it corresponds to two opposite FR fixed points (spins ‘up’, spins
‘down’). In this trivial case the phases φA, φB are irrelevant. In what follows, we assume that
sin θ is different from zero. Since, in general, v does not vanish either, we are left in (4.2)
with just sin(φA − φB) = 0 which implies

φB = φA = φ, (4.4)

or else

φB − π = φA = φ. (4.5)

In the case (4.4), one re-discovers, as expected, the FR NLSWs. The same holds true for
(4.5). Indeed, we will show in section 5 that for each k there is a k̃ such that
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k̃ ·Rj = k ·Rj − φA(B) and v(̃k) = −v(k). Therefore, (4.1) and (4.3) reduce to (3.2) and
(3.4) respectively for the wavevector k̃. Finally, for k such that v = 0 (if it exists), we again
find an FR NLSW. However φA, φB remain unrelated which allows for a phase difference
between sublattices. This is the only solution for θA = θB = θ that is not contained in (3.2)
(unless φA = φB = φ).

Let us now investigate the more interesting scenario where θA �= θB. Then, the solution
sin θA = sin θB = 0 corresponds to two opposite Néel states (sublattice A ‘up’, sublattice
A ‘down’). In the following we assume that sin θA �= 0. If v = 0 the system of (4.3) and
its A ↔ B interchange imply that θB = 0, π with w = b ± 1 respectively. This means
that all spins of the sublattice B remain aligned along the positive z-direction or the negative
z-direction. Note that despite the fact that equations (4.7)–(4.11) below are derived on the
assumption that v is not zero, they are consistent with the case v = 0. Thereby, we need not
consider this case separately. For v �= 0 the A ↔ B interchange of (4.3) shows that sin θB
must be different from zero, and so (4.2) yields (4.4) or (4.5). Then from equation (4.3) we
obtain

w = b + cos θB ∓ v cot θA sin θB, (4.6)

where the upper and lower signs correspond to (4.4) and (4.5) respectively. An A ↔ B
interchange in (4.6) gives for θA �= θB an additional independent equation, and these two can
be solved for

v = ∓ sin θA sin θB

1 + cos θA cos θB
(4.7)

and

w = b +
cos θA + cos θB

1 + cos θA cos θB
. (4.8)

Apart from the double sign in front, the right-hand side of (4.7) is strictly positive. On the
other hand, the sign of v is specified by its definition (3.8). Hence, if v < 0 the phases φA, φB
have to be chosen according to (4.4), while if v > 0 (4.5) must hold instead. Moreover, we
can write (4.7) as

|v| = sin θA sin θB

1 + cos θA cos θB
(4.9)

and (4.6) as

w = b + cos θB + |v| cot θA sin θB. (4.10)

Comparing the squares of (4.8) and (4.9), one finds a very simple dispersion relation

(w − b)2 + v2 = 1. (4.11)

Let us summarize the case θA �= θB, sin θA �= 0. By inserting (4.1) into the equations
of motion, we found that the phases of the sublattices satisfy (4.4) for v > 0 and (4.5) for
v < 0, that is, only one phase φ can vary independently. We also showed that the amplitudes
of the two sublattices are not unrelated, but obey the constraint (4.9). Finally we derived
the quadratic amplitude-independent relation (4.11). Thus, we conclude that for any specific
allowed values of k and φ, (4.1) describes a pair of one-parameter (θA, θB are constrained)
families of amplitude-independent frequencies w = b ± √

1 − v2. We can write
u+

j = sε sin θA(B)

× exp[i(k · Rj + (b ± √
1 − v2)τ − φ)]

uz
j = s cos θA(B)

 φ ∈ [0, 2π), θA(B) ∈ [0, π ]
j ∈ A(B)

(4.12)
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with the definition

ε ≡
{

+1, if v � 0
εA(B), if v � 0

∣∣∣∣ where
εA ≡ −εB ≡ 1

}
. (4.13)

It is important to note that in (4.12) the angles θA, θB depend on the ± sign. In fact, if
θA, θB are the angles corresponding to the positive sign (large frequency), then, according to
(4.8), cos θA + cos θB is non-negative, and π − θA, π − θB are the angles corresponding to
the negative sign (small frequency)7. Using (4.9), the energy (2.7) of the NLSWs (4.12) can
be expressed as

e = b(cos θA + cos θB) − 1 +
(cos θA + cos θB)2

1 + cos θA cos θB
. (4.14)

We should now analyse (4.12) in terms of the different values of v. From (4.8) we see
that w is real, therefore for k such that |v| > 1, (4.12) is not a solution. For |v| = 1 there is
only one family with the frequency w = b. From (4.8) and (4.14) we can see that the e–w

plot of this family comprises a single point, (b,−1), and that π − θB = θA ≡ θ . Hence,{
u+

j = sε sin θ exp[i(k ·Rj + bτ − φ)]

uz
j = sεA(B) cos θ

}
φ ∈ [0, 2π), θ ∈ [0, π ]
j ∈ A(B).

(4.15)

Another distinct case arises at non-zero magnetic field when |v| = √
1 − b2. There are two

families with frequencies w = 0, 2b, so the first one is a family of fixed points. Its e–w plot
is just the point (0,−1).

In the generic case where |v| ∈ [0, 1) and w �= 0 the system of (4.8), (4.14) can be solved
for cos θA + cos θB, cos θA cos θB:

cos θA + cos θB = e + 1

w
, cos θA cos θB = e + 1

w(w − b)
− 1 (4.16)

and ultimately for cos θA, cos θB as functions of energy. In this way, we can give up the two
constrained angles θA, θB appearing in the expression (4.12) of the AF families, in favour of a
single parameter, the energy e:

u+
j = sε

[
1 −

(
e+1
2w

± εA(B)

√(
e+1
2w

)2 − e+1
w(w−b)

+ 1

)2
] 1

2

× exp[i(k · Rj + wτ − φ)]

uz
j = s

(
e+1
2w

± εA(B)

√(
e+1
2w

)2 − e+1
w(w−b)

+ 1

)



φ ∈ [0, 2π), j ∈ A(B)

|v| ∈ [0, 1)

w = b ± √
1 − v2 �= 0

0 � e+1
2w(w−b)

� 1
1+|v|

(4.17)

For each value of k and φ, the e–w plot in this generic case consists of a pair of vertical
families with the frequencies w = b ± √

1 − v2 as indicated in (4.17). As |v| → 1 from
below, the two families collapse into the point (b,−1) that represents the family given by
(4.15). In (4.17), the double sign ± is the same for all j , but otherwise it can be chosen
arbitrarily and independently for the large and the small frequency. The meaning of this sign
will become clear shortly. Regarding the inequality in (4.17), the easiest way to derive it is
by requiring that the argument of the square root in the expression for uz

j be non-negative and

7 We distinguish between small and large frequency in the rather counter-intuitive sense of algebraic value as opposed
to absolute value.
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also that
|uz

j |
s

� 1. The energy range specified by this inequality is written more explicitly as

−1 � e � e+, if b � −√
1 − v2

e+ � e � −1, if b � −√
1 − v2

}
, for w = b +

√
1 − v2

−1 � e � e−, if b � +
√

1 − v2

e− � e � −1, if b � +
√

1 − v2

}
, for w = b −

√
1 − v2

(4.18)

where e± ≡ 1 − 2|v| ± 2b

√
1−|v|
1+|v| .

From (4.16) we see that the point e = −1 corresponds to the Néel state. To the lowest

order in σ ≡ s
√

e+1
w(w−b)

, the periodic orbits (4.17) reduce to the AF linear spin waves
u+

j = σε[1 − (±εA(B))(w − b)]
1
2

× exp[i(k · Rj + wτ − φ)]

uz
j = s(±εA(B))


φ ∈ [0, 2π), j ∈ A(B)

w = b ± √
1 − v2.

(4.19)

We deduce from (4.19), that the plus (minus) sign in (4.17) corresponds to sublattice A
being ‘up’ (‘down’) at the Néel state. Note finally that (4.18) implies: e ∈ [−1, e±], if
|b| �

√
1 − v2. Therefore, the Néel state persists as the lowest-energy point of the AF NLSW

family even at non-zero, albeit not too large, external magnetic field.

5. Lattice structure and wavevector

To understand the FR–AF bifurcations described in section 6, we first need to look closer
at the meaning of the wavevector k in conjunction with the lattice structure. In particular,
we will show that, (4.12) and (4.17) yield distinct families of periodic trajectories only for
�/2 values of k which we can choose so that v(k) takes only non-negative (or non-positive)
values.

The finite lattice is defined in terms of a primitive basis {ei : i = 1, . . . , D} as
{
R =∑D

i=1 µiei : µi ∈ {0, . . . , Li − 1},∀i
}
, where Li are integers and

∏D
i=1 Li = � is the total

number of sites. Its dual basis {εi : i = 1, . . . , D},ei · εj = δij , generates the reciprocal
lattice

{
G = ∑D

i=1 2πµiεi : µi ∈ {0, . . . , Li − 1},∀i
}
. Since R is a lattice vector, we can

still get all different solutions described by (3.2) and (4.1) if we restrict k in the primitive
cell

{
k = ∑D

i=1 ciεi : ci ∈ (−π, π ],∀i
}

of the reciprocal lattice, (or alternatively, the
first Brillouin zone). On top of this, the cyclic boundary conditions R ≡ R + Liei give
eik·(Liei ) = 1 or eiciLi = 1. Hence, the wavevector k can only run over the � distinct values
of the subset

� ≡
{

k =
D∑

i=1

2παi

Li

εi : αi ∈
{[

−Li

2

]
+ 1, . . . ,

[
Li

2

]}}
(5.1)

of the reciprocal primitive cell, where [· · ·] denotes the integer part. Of course, in the
infinite-lattice limit (Li → ∞,∀i), � coincides with the reciprocal primitive cell. When
dealing with a finite block of the lattice, the defining basis {ei} is singled out by the simplicity
the boundary conditions attain in this basis: ji ≡ ji + Li . However, it is a well-known fact
that the choice of primitive vectors is not unique.

If the lattice is bipartite, we will show that there is always a primitive basis such that
the number |µ| ≡ ∑D

i=1 µi is even, if R belongs to the sublattice A, and odd, if R belongs
to the sublattice B. Note first that if two successive sites along the direction of a primitive
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vector ei belong to the sublattice A, then since A itself is a Bravais lattice, all sites along ei

belong to this sublattice. Moreover, there exists at least one primitive direction along which
the sites of A and B are intercalated, otherwise A would coincide with the whole lattice.
Consequently, a primitive basis with its origin on an A site can always be written (within a
permutation of its vectors) as

P ≡ {e1, . . . ,en,en+1, . . . ,eD} with 1 � n � D, (5.2)

where the vectors e1, . . . ,en point along directions of alternating A and B sites (AB vectors)
while all sites along the vectors en+1, . . . ,eD are in A (AA vectors). Parenthetically, note
that for a finite lattice each dimension Li may be either even or odd, if i ∈ {n + 1, . . . , D},
however if i ∈ {1, . . . , n}Li can only be even because of the cyclic boundary conditions.
Since n � 1, we see that the total number of sites �, being the product of all Lis, must also
be even. We now construct the vectors

e′
m ≡ em +

n∑
i=1

l
(m)
i ei , m = n + 1, . . . , D, (5.3)

where l
(m)
i are integers. Any vector in P can clearly be expressed as an integral linear

combination of vectors in the set Pa ≡ {e1, . . . ,en,e
′
n+1, . . . ,e

′
D} and vice versa, so Pa is

also a primitive basis. However, for
∑n

i=1 l
(m)
i odd, Pa has the additional feature that all its

vectors lie along directions of alternating A and B sites. Then in the basis Pa , the number
|µ| is even for an A site and odd for a B site. In the following we refer to a basis with
this property as an AB basis. Note that apart from the requirement that

∑n
i=1 l

(m)
i be odd, the

integers l
(m)
i are arbitrary. Also, one can repeat the above construction for different initial bases

P . Thus we have actually demonstrated the existence of a plurality of (countable) infinities of
primitive bases with the desired ‘even–odd’ property for the sublattices.

Now, let the basis P in (5.2) be the defining basis of a finite bipartite lattice and P ′ =
{e′

1, . . . ,e
′
D} an arbitrary AB basis of the same lattice (not necessarily of the type Pa).

The change-of-basis matrix Q,ei = ∑D
n=1 Qine

′
n, that also relates the reciprocal bases,

ε′
n = ∑D

i=1 Qinεi , is such that both Q and its inverse Q−1 have integral entries. If µi and µ′
i

are the components of a site R in P and P ′ respectively, then µ′
n = ∑D

i=1 Qinµi . The index
εA(B) introduced in (4.12) is written as

εA(B) = (−1)|µ
′| = exp

(
iπ

D∑
n=1

µ′
n

)
= exp

[
i

D∑
i=1

(
π

D∑
n=1

Qin

)
µi

]
= exp(iq · R), (5.4)

where the components of the vector q in the reciprocal basis {εi} are

qi = π

D∑
n=1

Qin + 2πmi, mi ∈ Z. (5.5)

For two different sites Rj = ∑D
i=1 µiei and Rl = ∑D

i=1 νiei , one can see from (5.4) that
q · (Rl − Rj ) = π

∑D
n=1(ν

′
i − µ′

i ). This shows that if these two sites belong to different
sublattices then q · (Rl − Rj ) is an odd multiple of π . Therefore, from the definition (3.8)
we have that for any k,

v(k + q) = −v(k). (5.6)

By properly choosing the integers mi in (5.5), we introduce within the primitive cell of
the reciprocal lattice the bijective (1–1 and onto) map

� �
D∑

i=1

kiei = k −→ k̃ ≡ k + q =
D∑

i=1

{
ki + εiπ

[(
D∑

n=1

Qin

)
mod 2

]}
ei ∈ �, (5.7)
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v–b2/(1–v)

1+2b

v

1–2b

b–(v –1) 0 b b+(v –1)

FR

w

e (a)

v–b2/(1–v)

1+2b

v

1–2b

0 b–(v–1) b b+(v–1)

FR

w

e (b)

Figure 1. e–w plots of the NLSW solutions for v > 1 and b > 0. The FR fixed point with
all spins pointing along the positive (negative) z-axis is denoted by � (�). The solid line is
the e–w curve. The dashed-dotted lines signify bifurcations from fixed points. The dotted lines
are there for the purpose of only locating certain points on the e–w curve. (a) 0 < b < v − 1
(b) 0 < v − 1 < b.

in which

εi ≡
{

+1, if ki � 0

−1, if ki > 0

}
. (5.8)

This map establishes a duality in the sense that ˜̃k = k. Moreover, there are no self-dual
wavevectors, that is, k̃ �= k for every k ∈ �, since, according to (5.7)

k̃i =
{

ki + εiπ, if ei along an AB direction

ki, if ei along an AA direction

}
(5.9)

and there is at least one basis vector ei along an AB direction. Consequently, the discrete
primitive cell � is partitioned, via the bijection (5.7), into �/2 dual pairs (k, k̃) of distinct
wavevectors.

The highest point of the argument is this: armed with (5.4) and (5.6), one immediately
realizes that families of cycles in (4.12) (or (4.17)) corresponding to dual wavevectors are
identical. Hence, there are only �/2 distinct pairs of AF families in (4.12) (or (4.17))
(modulo the phase φ) labelled by �/2 pairwise non-dual wavevectors. It also follows from
(5.6) that these �/2 wavevectors k can be chosen so that v(k) � 0 for all k, or v(k) � 0 for
all k.

6. FR–AF bifurcations

In figure 1 we show the e–w plot of the NLSW families for a given value v � 1 and
different regimes of the dimensionless field b. According to the discussion in section 4, this
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plot contains only the FR family. From (3.13) and (3.9), we see that we can find the FR
family for v � 1 (concave up) by reflecting, with respect to the horizontal axis e = 1, the
FR family corresponding to v′ � 1 (concave down) such that v′ − 1 = 1 − v. However,
for −1 � v � 1 the two AF families also appear and, particularly if −1 � v � 0 (see
figure 2), their frequencies b ± √

1 − v2 lie within the frequency domain [b − |1 − v|, b +
|1 − v|] (see (3.9) of the FR family. It is interesting that all e–w curves are characterized
solely by the values of v and b and do not explicitly depend on any other parameters,
e.g., the exchange constants, the wavevector, the anisotropy, or the number of spins. In
figures 1 and 2, we have taken b to be positive. Reflecting the e–w plot with respect to the
vertical axis w = 0 yields the e–w plot for the field −b. Note now that, as long as −1 � v � 0,
any AF family with v′ = ±v ends exactly on any FR family corresponding to v. Let k and k′

respectively be the wavevectors of the FR family and the pair of AF families (of frequencies
b ± √

1 − v2) such that −|v(k′)| = v(k) ∈ [−1, 0]. As we will see below, choosing these
wavevectors in a simple way guarantees that the FR–AF transitions at the FR–AF intersection
points are continuous. Thus, we can view the AF families as bifurcations of FR families with
v from the interval [−1, 0].

To prove this statement, let us first substitute the AF frequencies w = b±√
1 − v2, where

v2 = v′2, into (3.9) to find the FR periodic orbits at the FR–AF intersection points:
u+

j = s
(

2v
v−1

) 1
2 exp

[
i
(
k ·Rj +

(
b ± √

1 − v2
)
τ − φ

)]
uz

j = ±s
(

1+v
1−v

) 1
2


φ ∈ [0, 2π)

v ∈ [−1, 0]
j = 1, . . . , �.

(6.1)

Now, according to (4.18), the AF periodic solutions at the FR–AF intersections are given by
(4.17) at energies e±:

u+
j = sε′ ( 2v

v−1

) 1
2

× exp
[
i
(
k′ · Rj +

(
b ± √

1 − v2
)
τ − φ′)]

uz
j = ±s

(
1+v
1−v

) 1
2


φ′ ∈ [0, 2π), v ∈ [−1, 0]
j = 1, . . . , �

ε′ ≡
{

+1, if v′ � 0
εA(B), if v′ � 0

}
.

(6.2)

Note that in the special case v = −1 we cannot use (4.17), but we derive (6.2) all the same,
starting from (4.15) with θ = π

2 . Comparing (6.1) with (6.2), it only remains to find, in the
case v �= 0, the relation between k′ and k so that

exp[i(k · Rj − φ)] = ε′ exp[i(k′ ·Rj − φ′)]. (6.3)

In view of the discussion in section 5, the constant phases φ, φ′ must be equal and the
wavevector of the two AF families is given by

k′ =
{

k̃, if v′ ∈ (0, +1]

k, if v′ ∈ [−1, 0)

}
. (6.4)

It is important to keep in mind, though, that to label the AF families we only need to consider
k′ such that v′ � 0 (or v′ � 0).

We conclude that, for a general Bravais lattice, every pair of AF NLSW families
bifurcates from a unique FR NLSW family. The momentum k′ of the two AF families
and the momentum k of the FR family are related according to (6.4). The FR families with
v(k) /∈ [−1, 0] display no FR–AF bifurcations. To visualize the approach to bifurcation along
the AF families, we can plot the spin z-components of the two sublattices as functions of
the energy (see figure 3). Two families of opposite momentum correspond to each curve in
figure 3. Figures 3(a) and (b) also show the values of cos(π − θ) in terms of the energy for the
negative field b = −0.9 and for the large and small frequencies respectively (given that we
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Figure 2. e–w plots of the NLSW solutions for −1 < v < 0 < b. The FR fixed point with all
spins pointing along the positive (negative) z-axis is denoted by � (�). The AF fixed point, that
is, the Néel stationary state (with even sublattice pointing either ‘up’ or ‘down’), is denoted by
♦. The solid lines are the FR and AF e–w curves. The dashed-dotted lines signify bifurcations
from fixed points. We use the asterisk to mark the FR–AF isochronous branching. Finally, the thin
dotted lines help visualize certain points on the e–w curves. We distinguish the following cases:
(a) −1 < v < 0 < b <

√
1 − v2 (b) −1 < v < 0 <

√
1 − v2 < b < 1 − v (c) −1 < v <

0 < 1 − v < b.

interchange solid and dashed line type). Also, it is worth noting that, according to the second
equation in (6.2), the ordinates (spin angles) of the bifurcation points are independent of the
magnetic field.
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Figure 3. The Heisenberg chain of L = 20 sites under the influence of a magnetic field b = 0.9.
Each solid (dashed) curve shows the behaviour of the z-component per spin length of the ‘up’
(‘down’) sublattice, as the energy e varies along a particular AF family. The FR–AF bifurcations
are denoted by the asterisk. There are five distinct pairs of curves meeting at bifurcation points for
(a) small frequencies; similarly for (b) large frequencies. These correspond to the different values
of |v| = cos(πα/10), α = 1, . . . , 5 where, in each plot, α increases from left to right.

Looking closer at the role of the latter in the FR–AF bifurcations, note that in the
absence of an external field (b = 0), the two AF families have opposite frequencies and
endpoints at the same energy, as one can also see in figure 2(a). Therefore, the FR–AF
bifurcations for b = 0 are represented by the very same point on the E–T (energy–period)
plot. On the other hand, with the introduction of a magnetic field, the resulting z → −z

symmetry breaking induces a ‘splitting’ of this branching point of the E–T plot to two distinct
ones.

7. Discussion

We presented in detail the various cases of NLSW families for the classical HM and studied
the isochronous bifurcations between the FR and AF branches. Our analysis shows that,
once the role of the wavevector k has been clarified, the FR–AF bifurcations can be described
in the context of a general Bravais lattice and possibly long-range interactions, and in a way
as simple as for a small spin ring. We have also allowed for longitudinal anisotropy as well
as a uniform constant magnetic field along the line of anisotropy.

We would like to mention a number of ways in which one might want to extend further
the ideas presented here. It is interesting to investigate numerically how the stability of
periodic orbits evolves along a family. To the extent that the qualitative change of dynamics,
in the vicinity of a bifurcation, surfaces at the linear level, one can characterize the FR–AF
bifurcations in terms of the behaviour of the Floquet multipliers. We have already made a start
in this direction, and our results will appear in [43]. Other possibilities include the extension
of these ideas to the case of single-ion anisotropy which bends the AF families off the vertical
line, and the study of ‘off-shell’ families of solutions, that is, generalized NLSWs for unequal
spins [42].
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